Available Equipment (ELI-ERIC)

LEIA

Low Energy Ion Acceleration beamline (LEIA)

 

Brief description of the system

 

The LEIA Beamline is suited for acceleration of ions with the use of the SYLOS Experimental Alignment (SEA) laser to cut-off energy up to 2MeV, at a repetition rate between shot-on-demand and 10Hz, and pulse durations from sub-two cycle onwards.

The beamline may be used for scientific experiments, supported by the beamline diagniostics as three Thomson ion spectrometers, a time-of-flight neutron detection system nTOF, and a bubble detector system.

Contact person

Karoly Osvay
(osvay[@]physx.u-szeged.hu)

 

Description of key areas of science

 

The LEIA beamline has been designed to study ion acceleration with ultrashort laser pulses [1] from single shot to kHz repetition rates. The study includes charge-mass characterisation of the particles with calibrated Thomson ion spectrometers [2], and spatial characterisation of the proton beams with the use of CR39 trace detectors [3]. Beyond the study of ion acceleration mechanisms, the ion beams can generate neutrons in a pitcher-catcher scheme, with the use of appropriate secondary targets.

 

Full description of system

 

Main experimental geometries

 

The geometry of the interaction chamber at 45°shooting configuration, and with two Thomson ion spectrometers, and detection of the back-reflected energy of the laser pulse.

 

Available sample delivery systems and target systems

 

A single-shot target system is available, constructed from three translator stages using the PI’s VT-80 series.  

 

Available detection and observation systems

 

  • Thomson ion spectrometers equipped with 3” diameter MCP (Photonis) and high resolution CCD cameras (EHD’s SCM825-M-TE)

  • Bubble detection system (BTI BDS)

  • Neutron ToF system (consisting of 4-4 plastic scintillators with EJ-230 and EJ-309 materials, respectively. Each detector is equipped with Hamamatsu R2038 PMD. Data acquisition via CAEN 1751C.)

  • Detection of the back-reflected laser energy as well as the transmitted laser energy is possible.


References

[1] S. Ter-Avetisyan, P. Varmazyar, P. K. Singh, J-G. Son, M. Fule, V. Y. Bychenkov, B. Farkas, K. Nelissen, S. Mondal, D. Papp, A. Borzsonyi, J. Csontos, Zs. Lecz, T. Somoskoi, L. Toth, Sz. Toth, V. Andriy, D. Margarone, A. Necas, G. Mourou, G. Szabo, K. Osvay, “Ion acceleration with few cycle relativistic laser pulses from foil targets”, Plasma Phys. Control. Fusion 65 (2023) 085012
https://doi.org/10.1088/1361-6587/acde0a

[2] P. Varmazyar, P. K. Singh, Z. Elekes, Z. Halász, B. Nagy, J. G. Son, J. Csontos, A. Mohacsi, K. Nelissen, T. Somoskői, R. E. Szabo, Sz Toth, S. Ter-Avetisyan, K. Osvay, “Calibration of Micro Channel Plate detector in a Thomson Spectrometer for Protons and Carbon Ions with Energies below 1 MeV“, Review of Scientific Instruments 93, (2022) 073301
https://doi.org/10.1063/5.0086747

[3] P. K. Singh, P. Varmazyar, B. Nagy, J. G. Son, S. Ter-Avetisyan, K. Osvay, “Low divergent MeV-class proton beam with micrometer source size driven by a few-cycle laser pulse”, Scientific Reports 12 (2022) 9754
https://doi.org/10.1038/s41598-022-12240-2

[4] Sz. Tóth, R. S. Nagymihály, I. Seres, L. Lehotai, J. Csontos, L. T. Tóth, P. P. Geetha, T. Somoskői, B. Kajla, D. Abt, V. Pajer, A. Farkas, Á. Mohácsi, Á. Börzsönyi, K. Osvay, “Single thin-plate compression of multi-TW laser pulses to 3.9 fs”, Optics Letters 48 (2023) 57-60
https://doi.org/10.1364/OL.478253

 

February

22

Thursday